
Surviving Client/Server:
More Data Processing With SQL
by Steve Troxell

Last month, we saw how we can
use subqueries to get SQL to do

some of the data manipulation
work we might otherwise be
tempted to code into the client
application. This month, we’ll go
further by examining some SQL
programming techniques to per-
form even more complex data
computations.

Frequency
Distributions With GROUP BY
If you recall from the last issue,
many of the examples showed
counts of various items. However,
the raw data you have to work with
may show discrete transactions
rather than summarized data, as
we had assumed for the web page
examples in the last issue.

You may have to show total cus-
tomers by region from a table of
customers. You may have to show
sales by month from a table of or-
ders. You may have to show con-
tacts per zip code from a table of
mailing addresses. Or, you may
even have to show web hits by
month from a table of individual
HTTP transactions. Showing quan-
tities of different categories of
units is a basic statistical analysis
method called a frequency distri-
bution.

Producing these basic frequency
distributions from raw data is actu-
ally quite simple with SQL’s GROUP
BY clause. For example, the query
in Figure 1 shows the breakdown of
customers by state. Notice that the
ORDER BY clause gives us a list of
states starting with the highest
concentration of customers down
to the lowest.

We can also employ the HAVING
clause to filter the data shown in
our frequency distributions. If we
were only interested in states with
more customers than California,
we could use the query shown in
Figure 2.

Business Statistics
Figure 3 shows a typical business
report displaying departmental
budgets for an organization (this
data comes from the example
InterBase database EMPLOYEE.GDB).
This entire report can be obtained
through one SQL statement (with
the nifty formatting of the currency
and percentage fields coming from
an external reporting tool such as

Excel or Crystal Reports). We’ll ex-
amine each computation one at a
time until we’ve built up to the full
report query.

The Department and Budget col-
umns in our report simply come
from the corresponding fields in
the Department table, no computa-
tion is involved yet. The Budget
Share column shows each depart-
ment’s budget as a proportion of
the total budget.

SELECT Department, Budget,
  (Budget / (SELECT SUM(Budget) FROM Department)) AS Share
  FROM Department
  ORDER BY Budget DESC, Department ASC

➤ Listing 1

SELECT Department, Budget,
  (Budget / (SELECT SUM(Budget) FROM Department)) AS Share,
  (SELECT SUM(Budget) FROM Department
    WHERE (Budget > D.Budget) OR (Budget = D.Budget AND
      Department <= D.Department)) AS CumulativeTotal,
  (SELECT SUM(Budget) FROM Department
    WHERE (Budget > D.Budget) OR (Budget = D.Budget AND
      Department <= D.Department)) /
  (SELECT SUM(Budget) FROM Department) AS CumulativePercent
FROM Department D
ORDER BY Budget DESC, Department ASC

➤ Listing 3

SELECT Department, Budget,
  (Budget / (SELECT SUM(Budget) FROM Department)) AS Share,
  (SELECT SUM(Budget) FROM Department
    WHERE (Budget > D.Budget) OR (Budget = D.Budget AND
      Department <= D.Department)) AS CumulativeTotal
  FROM Department D
  ORDER BY Budget DESC, Department ASC

➤ Listing 2

SELECT State, COUNT(*)
  FROM Customers
  GROUP BY State
  ORDER BY 2 DESC

STATE COUNT
===== ======
NY    25545
PA    17882
CA    11567
FL    8773
CO    2308

➤ Figure 1

SELECT State, COUNT(*)
  FROM Customers
  GROUP BY State
  HAVING COUNT(*) > (SELECT
COUNT(*) FROM Customers
    WHERE State = ’CA’)

STATE COUNT
===== ======
NY    25545
PA    17882

➤ Figure 2

38 The Delphi Magazine Issue 15



We can use the query shown in
Listing 1 to produce the first three
columns of our report. This query
uses a subquery to compute the
total budget and then uses that as
the divisor for the percent of total
calculation. Bear in mind that in
this case, most SQL servers will
execute the inner query once, sub-
stitute the resulting value as a con-
stant into the outer query, then run
the outer query.

Although the overall list is or-
dered by the amount of the budget,
we include the department name in
the ordering to ensure that depart-
ments with the same budget
amount are sequenced consis-
tently. This is not only important
for the user, but becomes critical
for the enhancements we’ll add in
the following sections.

The cumulative total is simply a
running total of all the department
budgets, ending with the total
budget for the entire organization
on the last line. Listing 2 shows
how we can calculate this value by
adding a correlated subquery.

Because the cumulative total is
defined as the sum of all rows prior
to and including the current row,
our query is now sensitive to the

order of the rows in the result set.
For the budget report in our exam-
ple, the order is generally deter-
mined by the Budget column, so the
coarse definition for our calcula-
tion would be “the sum of all budg-
ets greater than or equal to the
current department’s budget.” The
correlated subquery that corre-
sponds to this definition would be:

(SELECT SUM(Budget)
  FROM Department
WHERE (Budget >= D.Budget)

But this doesn’t properly account
for the case where more than one
department has the same budget.
With this subquery, the cumulative
total for each of the four field of-
fices with a $500,000 budget would
be $12,750,000.

To handle this case, we must de-
fine some order to the duplicating
rows. The ORDER BY clause in Listing
2 shows that when the budgets are
the same, the rows are ordered al-
phabetically by the department
name. Knowing this, we arrive at
the correct subquery to produce
the cumulative total. The initial
part of the subquery’s WHERE clause
(Budget > D.Budget) finds all

budgets greater than the current
department’s budget. The next
part handles the case where there
are other departments with the
same budget (Budget = D.Budget)
and includes only those depart-
ments that already appear in the
result set (Department <= D.Depart-
ment). Notice the direction of the
relational operators for Budget (>)
and Department (<). This is because
the order of the overall result set
is descending on Budget and
ascending on Department.

To calculate the cumulative per-
cent for any given row, we simply
divide the cumulative total for that
row by the overall total. Listing 3
shows the query we use to accom-
plish this. All we have to do here is
repeat the subquery that calcu-
lates the cumulative total and di-
vide it by a subquery to obtain the
overall total. We already have
subqueries to calculate both of
these values, but unfortunately
most SQL servers won’t allow us to
simply use the column names of
calculated fields to produce an-
other calculated field. So we are
forced to repeat our subquery
definitions for the terms in our
calculation of cumulative percent.

Budget Cumulative Cumulative
Department Budget Share Total Percent

Sales and Marketing $2,000,000 13.0% $2,000,000 13.0%
Marketing $1,500,000 9.7% $3,500,000 22.7%
Software Products Div. $1,200,000 7.8% $4,700,000 30.5%
Consumer Electronics Div. $1,150,000 7.5% $5,850,000  38.0%
Engineering $1,100,000 7.1% $6,950,000 45.1%
Corporate Headquarters $1,000,000 6.5% $7,950,000 51.6%
Customer Services $850,000 5.5% $8,800,000 57.1%
European Headquarters $700,000 4.5% $9,500,000 61.6%
Customer Support $650,000 4.2% $10,150,000 65.9%
Pacific Rim Headquarters $600,000 3.9% $10,750,000 69.8%
Field Office: Canada $500,000 3.2% $11,250,000 73.0%
Field Office: East Coast $500,000 3.2% $11,750,000 76.2%
Field Office: Japan $500,000 3.2% $12,250,000 79.5%
Field Office: Switzerland $500,000 3.2% $12,750,000 82.7%
Research and Development $460,000 3.0% $13,210,000 85.7%
Field Office: France $400,000 2.6% $13,610,000 88.3%
Field Office: Italy $400,000 2.6% $14,010,000 90.9%
Finance $400,000 2.6% $14,410,000 93.5%
Software Development $400,000 2.6% $14,810,000 96.1%
Field Office: Singapore $300,000 1.9% $15,110,000 98.1%
Quality Assurance $300,000 1.9% $15,410,000 100.0%

➤ Figure 3

November 1996 The Delphi Magazine 39



Hierarchical Data
On some occasions you may find
need to represent data in hierarchi-
cal form. For example, the menu
structure of a typical Windows ap-
plication is hierarchical in nature.
Basically, any type of data that can
be represented in Delphi’s TOutline
control is hierarchical.

In the Department table from
EMPLOYEE.GDB, there is a Head_Dept
field. This field represents the
“parent” for any given department.
By threading our way though the
Head_Dept and Dept_No fields we can
construct the organization’s de-
partment hierarchy. Figure 4
shows the desired outline (note
that departments on the same level
are shown alphabetically).

To produce this chart, we can
use SQL to derive the correct out-
line positions, or indentation lev-
els, for each department in the
table.

Listing 4 shows a recursive Inter-
Base stored procedure that pro-
duces a result set from which we
may construct this chart. To run
this procedure, we provide the
root department number we want
to start with and an indentation
level of 0 (see Figure 5). The result
set shows the indentation level,
department number, and depart-
ment name for each department in
the organization. From the indenta-
tion level we can easily insert the
data into a TOutline control or pre-
pend spaces to the department
name to produce the chart shown
in Figure 4.

What’s handy about this proce-
dure is that you can start with any
department number and produce a
chart for just that branch of the
organization. Figure 6 shows a call
to this procedure that produces
a chart for just the Software
Products Division.

A more effective approach is to
eliminate the recursion and use
temporary tables. Listing 5 shows
a Microsoft SQL Server procedure
to solve the same problem. Its out-
put is identical to that shown in
Figure 5. This technique comes
from the Microsoft SQL Server Data-
base Developer’s Companion. It
uses a temporary table called
#Stack to implement a stack struc-
ture which keeps track of the de-
partments we are drilling into as we
expand their child departments.
The output is compiled into an-
other temporary table called
#Results which is dumped as the
result set for the stored procedure.

With SQL Server, temporary ta-
bles are local to the procedure that
creates them and can be stored
within server RAM, so the over-
head is minimal. Also, because the
recursive call is eliminated, the
caller doesn’t need to pass in the
initial indentation value.

Cross Tabulations
A cross tabulation (crosstab) is a
basic method of comparing two
variables in a set of data (in prac-

tice, a crosstab can actually be
built for n variables, but we’ll
restrict our discussion here to just
two dimensions). The results of a
crosstab generally show all the val-
ues for one variable listed down
the left side as row headers and all
the values for the second variable
listed across the top as column
headers, with the intersecting
“cells” representing the number of
data elements containing that com-
bination of variables (Figure 7).

There are a number of SQL tech-
niques to produce crosstab result
sets, but one particularly elegant
approach I’d like to share with you
comes from Joe Celko’s SQL for
Smarties: Advanced SQL Program-
ming. The crosstab shown in Figure

CREATE PROCEDURE DeptChart(Head_Dept char(3), Indent smallint)
  RETURNS (Lvl smallint, Dept_No char(3), Department varchar(25))
AS
  DECLARE VARIABLE Child_Dept char(3);
BEGIN
  /* Return info for the dept passed in */
  SELECT :Indent, Dept_No, Department
    FROM Department
    WHERE Dept_No = :Head_Dept
    INTO :Lvl, :Dept_No, :Department;
  SUSPEND;
  Indent = Indent + 1;
  /* Find all depts one level below this one.
     The ORDER BY here determines the sequence of
     departments at the same level. */
  FOR
    SELECT Dept_No FROM Department
      WHERE Head_Dept = :Head_Dept
      ORDER BY Department
      INTO :Child_Dept
  DO
    FOR
      SELECT * FROM DeptChart(:Child_Dept, :Indent)
        INTO :Lvl, :Dept_No, :Department
    DO SUSPEND;
END

➤ Listing 4

Corporate Headquarters
  Engineering
    Consumer Electronics Div.
      Customer Services
      Research and Development
    Software Products Div.
      Customer Support
      Quality Assurance
      Software Development
  Finance
  Sales and Marketing
    European Headquarters
      Field Office: France
      Field Office: Italy
      Field Office: Switzerland
    Field Office: Canada
    Field Office: East Coast
    Marketing
    Pacific Rim Headquarters
      Field Office: Japan
      Field Office: Singapore

➤ Figure 4

SELECT * FROM DeptChart(’000’, 0)

LVL DEPT_NO DEPARTMENT
=== ======= ========================
  0 000     Corporate Headquarters
  1 600     Engineering
  2 670     Consumer Electronics Div.
  3 672     Customer Services
  3 671     Research and Development
  2 620     Software Products Div.
  3 623     Customer Support
  3 622     Quality Assurance
  3 621     Software Development
  1 900     Finance
  1 100     Sales and Marketing
  2 120     European Headquarters
  3 123     Field Office: France
  3 125     Field Office: Italy
  3 121     Field Office: Switzerland
  2 140     Field Office: Canada
  2 130     Field Office: East Coast
  2 180     Marketing
  2 110     Pacific Rim Headquarters
  3 115     Field Office: Japan
  3 116     Field Office: Singapore

➤ Figure 5

40 The Delphi Magazine Issue 15



7 gives book titles by publisher
from the Titles table in the
Microsoft example database Pubs.
The raw data for this report can be
shown with a simple SELECT GROUP
BY statement (Figure 8). A crosstab
takes this one dimensional data
and presents it in the two dimen-
sional grid format which is shown
in Figure 7.

To get to Figure 7 from Figure 8,
we can use the query shown in

Figure 9 (on the next page). The
first SELECT statement produces a
list of rows of unique book types.
The columns for these rows are
defined as correlated subqueries
computing the sum of all titles of
that type for each of the three pub-
lishers (the PUB_xxxx notation at
the end of the subqueries is how we
assign a name to a computed col-
umn in SQL Server). The final
subquery computes the total for

each given book type to provide
the row total in the crosstab.

This result set is unioned with
another SELECT statement which
uses subqueries to compute the
column totals. The UNION ALL syn-
tax means the rows from the two
result sets are merged together
without regard to duplicate rows
between them. This prevents the
union from imposing an implicit
order to the rows and leaves our
column totals as the last row in the
overall result set, instead of it
appearing alphabetically within
the book types column.

CASE Expressions
ANSI SQL-92 provides a CASE ex-
pression that can be used to return
conditional values. Unlike most
CASE structures in procedural lan-
guages which control program
flow, CASE in SQL is a type of expres-
sion macro that returns a value
(like a function result) based on the
logic within the CASE function.
Therefore, CASE can be used to con-
ditionally return a value anywhere
an expression is allowed in SQL.
Typically, you’ll find CASE used to
manipulate results returned by a
SELECT statement as shown in
Figure 10 (the examples for CASE are
for Microsoft SQL Server, CASE is
not supported by InterBase).

In this example, the third column
is defined by the CASE function and
the column has been given a name
of Label (just as we can rename any
column in a result set). Here, the
CASE function examines the Country
field and returns a character value
based on the contents of the that
field. The WHEN clause translates to
“when Country equals ‘USA’” and
the THEN clause defines the value to

CREATE PROCEDURE DeptChart (@Current char(3))
AS
BEGIN
  DECLARE @Indent smallint
  /* Create stack and initialize it with the root department */
  CREATE TABLE #Stack (Dept_No char(3), Indent smallint)
  INSERT INTO #Stack VALUES (@Current, 0)
  CREATE TABLE #Result (Indent smallint, Dept_No char(3),
    Department varchar(30))
  /* Initial indentation level is 0 */
  SELECT @Indent = 0
  WHILE @Indent >= 0
  BEGIN
    /* If any departments are at this level */
    IF EXISTS(SELECT * FROM #Stack WHERE Indent = @Indent)
    BEGIN
      SELECT @Current = Dept_No FROM #Stack WHERE Indent = @Indent
    /* Return info for the current dept */
    INSERT INTO #Result
      SELECT @Indent, @Current, SPACE((@Indent - 1) * 2) + Department
        FROM Department WHERE Dept_No = @Current
    /* Remove current dept from the stack */
    DELETE FROM #Stack WHERE Indent = @Indent AND Dept_No = @Current
    /* Find all the depts one level below this dept */
    INSERT INTO #Stack SELECT Dept_No, @Indent + 1 FROM Department
      WHERE Head_Dept = @Current
      ORDER BY Department DESC
    /* If any found, increase the indentation level. @@ROWCOUNT
       returns the # of rows affected by the immediately previous
       SQL statement. */
    IF @@ROWCOUNT > 0 SELECT @Indent = @Indent + 1
  END
  ELSE
    SELECT @Indent = @Indent - 1
END
SELECT * FROM #Result /* Return the accumulated results */
END

➤ Listing 5

SELECT Type, Pub_ID, COUNT(*)
  FROM Titles
  GROUP BY Type, Pub_ID

TYPE         PUB_ID COUNT
============ ====== ========
business     0736   1
business     1389   3
mod_cook     0877   2
popular_comp 1389   3
psychology   0736   4
psychology   0877   1
trad_cook    0877   3
UNDECIDED    0877   1

➤ Figure 8

SELECT * FROM DeptChart(’620’, 0)

LVL    DEPT_NO DEPARTMENT
====== ======= =========================
     0 620     Software Products Div.
     1 623     Customer Support
     1 622     Quality Assurance
     1 621     Software Development

➤ Figure 6

Type 0736 0877 1389      Total

business 1 0 3         4
mod_cook 0 2 0         2
popular_comp 0 0 3         3
psychology 4 1 0         5
trad_cook 0 3 0         3
UNDECIDED 0 1 0         1

Total 5 7 6         18

➤ Figure 7

November 1996 The Delphi Magazine 41



return if the WHEN clause is true. As
with most CASE structures, you can
have as many WHEN THEN clauses as
you have cases to examine. Any
unaccounted for cases can be cap-
tured by an optional ELSE clause
which simply defines the value to
return if the case is not explicitly
handled by one of the WHEN THEN
clauses.

CASEs also can be used to check
non-discrete values. Figure 11
shows an alternate way to use CASE
to examine ranges of values. Here,
the TitleAuthor table links one or
more authors to a book title and
defines the royalty percentage for
each author. The CASE function
simply compares the range of the
royalty percentage and returns a
character value labeling the seg-
ment of the range that author
happens to fall in.

CASE functions don’t have to re-
turn just character values, but any
SQL data type: integers, floats,
dates, even nulls if that’s what you
need. Also, a subquery could be
used in the WHEN expression as long
as it results in a single value that
could be compared against.

Using CASE may allow you to
avoid UNIONing multiple SELECT
statements together to produce a
single result set with calculated
fields that vary based on row
content. For example, Listing 6
shows two equivalent queries
which produce a projected salary
increase report for two depart-
ments, each department using a

SELECT DISTINCT Type,
  (SELECT COUNT(*) FROM Titles
    WHERE Type = T0.Type AND Pub_ID = ’0736’) ’PUB_0736’,
  (SELECT COUNT(*) FROM Titles
    WHERE Type = T0.Type AND Pub_ID = ’0877’) ’PUB_0877’,
  (SELECT COUNT(*) FROM Titles
    WHERE Type = T0.Type AND Pub_ID = ’1389’) ’PUB_1389’,
  (SELECT COUNT(*) FROM Titles
    WHERE Type = T0.Type) ’RowTotal’
  FROM Titles T0
UNION ALL
SELECT ’Column Total’,
  (SELECT COUNT(*) FROM Titles WHERE Pub_ID = ’0736’),
  (SELECT COUNT(*) FROM Titles WHERE Pub_ID = ’0877’),
  (SELECT COUNT(*) FROM Titles WHERE Pub_ID = ’1389’),
  (SELECT COUNT(*) FROM Titles)

Type         PUB_0736    PUB_0877    PUB_1389    RowTotal
============ =========== =========== =========== ===========
business     1           0           3           4
mod_cook     0           2           0           2
popular_comp 0           0           3           3
psychology   4           1           0           5
trad_cook    0           3           0           3
UNDECIDED    0           1           0           1
Column Total 5           7           6           18

➤ Figure 9

SELECT Pub_Name, Country,
    CASE Country
      WHEN ’USA’ THEN ’Domestic’
      ELSE ’Overseas’
    END Label
  FROM Publishers

Pub_Name                  Country       Label
========================= ============= ========
New Moon Books            USA           Domestic
Binnet & Hardley          USA           Domestic
Algodata Infosystems      USA           Domestic
Five Lakes Publishing     USA           Domestic
Ramona Publishers         USA           Domestic
GGG&G                     Germany       Overseas
Scootney Books            USA           Domestic
Lucerne Publishing        France        Overseas

➤ Figure 10

SELECT *,
    CASE
      WHEN RoyaltyPer <= 33 THEN “Bottom Third”
      WHEN RoyaltyPer > 33 AND RoyaltyPer <= 66 THEN “Middle Third”
      WHEN RoyaltyPer > 66 THEN “Top Third”
      ELSE “Undefined”
    END
  FROM TitleAuthor

au_id       title_id au_ord royaltyper
=========== ======== ====== =========== ============
172-32-1176 PS3333   1      100         Top Third
213-46-8915 BU1032   2      40          Middle Third
213-46-8915 BU2075   1      100         Top Third
238-95-7766 PC1035   1      100         Top Third
267-41-2394 BU1111   2      40          Middle Third
267-41-2394 TC7777   2      30          Bottom Third
274-80-9391 BU7832   1      100         Top Third
409-56-7008 BU1032   1      60          Middle Third
427-17-2319 PC8888   1      50          Middle Third
472-27-2349 TC7777   3      30          Bottom Third

➤ Figure 11

/* First query: */
SELECT Emp_No, Dept_No, Salary,
  Salary * 1.20 NewSalary
    FROM Employee
    WHERE Dept_No = ’621’
UNION
SELECT Emp_No, Dept_No, Salary,
  Salary * 1.05 NewSalary
    FROM Employee
    WHERE Dept_No = ’180’

/* Second query: */
SELECT Emp_No, Dept_No, Salary,
    CASE
      WHEN Dept_No = ’621’ THEN
        Salary * 1.20
      WHEN Dept_No = ’180’ THEN
        Salary * 1.05
    END NewSalary
  FROM Employee
  WHERE Dept_No = ’621’ OR
    Dept_No = ’180’

➤ Listing 6

different calculation to increase
salaries.

CASE is not restricted to manipu-
lating column values returned by

SELECT. Actually, CASE can be used
anywhere an expression is al-
lowed. A CASE function can be used
in an UPDATE to modify a column

42 The Delphi Magazine Issue 15



with values varying based on the
CASE logic, or you could even use a
CASE function to affect a WHERE
clause.

The COALESCE Function
Related to the CASE function is the
COALESCE function, which accepts
any number of arguments and re-
turns the first argument that is not
null, or returns null if all arguments
are null. The example shown in
Figure 12 illustrates this (this ex-
ample comes directly from the SQL
Server on-line help). Given a table
of employees, which may be
hourly, salaried, or paid on com-
mission, compute the total annual
compensation for each employee.

Conclusion
As you can see, there is quite a bit
you can accomplish within SQL,
which usually provides a more
compact, reliable solution.

When embedded within stored
procedures or triggers, an SQL-
based algorithm is re-usable by
other applications, even if written
in different languages. You have to
be careful though, some of the

SELECT *, COALESCE(Hourly_Wage * 40 * 52,
     Salary,
     Commission * Num_Sales) TotalComp
  FROM Wages

Emp_ID Hourly_Wage Salary      Commission  Num_Sales   TotalComp
====== =========== =========== =========== =========== ===========
1      10          (null)      (null)      (null)      20800
2      20          (null)      (null)      (null)      41600
3      30          (null)      (null)      (null)      62400
4      40          (null)      (null)      (null)      83200
5      (null)      10000       (null)      (null)      10000
6      (null)      20000       (null)      (null)      20000
7      (null)      30000       (null)      (null)      30000
8      (null)      40000       (null)      (null)      40000
9      (null)      (null)      15000       3           45000
10     (null)      (null)      25000       2           50000
11     (null)      (null)      20000       6           120000
12     (null)      (null)      14000       4           56000

➤ Figure 12

subquery processing can be a per-
formance problem for very large,
poorly organized tables. On the
other hand, processing like the
crosstabs might be more efficiently
handled by the server than by
downloading all the raw data to a
client application or report writer
across a network.

As with everything, good judg-
ment must prevail in deciding the
appropriateness of any technique
for your particular circumstances.

However, deciding which tool is
the right tool is better if you have
lots of tools to choose from.

Steve Troxell is a software engi-
neer with TurboPower Software
where he is developing Delphi
client/server applications for the
casino industry. Steve can be
contacted at stevet@tpower.com
or on CompuServe at 74071,2207

November 1996 The Delphi Magazine 43


	Frequency Distributions With GROUP BY
	Business Statistics
	Hierarchical Data
	Cross Tabulations
	CASE Expressions
	The COALESCE Function
	Conclusion

